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1

Smoothing and Averaging of Functions on the
Sphere

At the product level 2, GRACE data are condensed to monthly sets of fully
normalized spherical harmonic coefficients. These coefficients are the outcome
of a rather complex data processing scheme. For scientific analysis, users
of GRACE data will have to perform a number of basic operations on the
GRACE coefficients: transform dimensionless geopotential coefficients into
gridded geoid heights or maps of surface density expressed through equivalent
water heights, and average such maps over the surface of some hydrological
catchment area or ocean basin. Moreover, one of the problems that users of
the GRACE level-2 products face is the presence of increasing correlated noise
(’stripes’) at higher frequencies. Smoothing operators can be applied in either
spatial or spectral domain in order to suppress the effect of noise in maps and
area averages. The purpose of this chapter is to describe the mathematical
concepts underying these procedures.

Notation

According to [2], we write the gravitational potential at a fixed location as a
function of time as

V (r, θ, λ, t) =
GM

r

+
GM

r

n̄∑

n=2

(
R

r

)n n∑

m=0

Pnm(cos θ)
(
C̄nm(t) cosmλ+ S̄nm(t) sinmλ

)

with θ = π
2 − φ, GM = µ (in [2]), and fully normalized spherical harmonic

coefficients C̄nm and S̄nm. The other quantities will be explained later.

In the following, we will refer to either temporal variations in the geoid or in
total water storage (TWS), the spherical harmonic coefficients of which we
will denote as f̄nm. These quantities are related to the gravitational poten-
tial via simple spectral relations, which are valid under certain assumptions
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(’spherical approximation’, radial Earth model) that will be discussed else-
where during the summer school. Under these assumptions, the geoid or TWS
changes projected to the space domain read

F =

∞∑

n=0

n∑

m=−n
f̄nmȲnm(λ, θ) .

Total water storage change from geopotential harmonics. In this case, the
common approximation is

f̄nm(t) = R
ρe
3

2n+ 1

1 + k′n
(v̄nm(t) − v̄nm)

with
v̄nm = C̄nm for m ≥ 0, v̄nm = S̄n|m| for m < 0 ,

and v̄nm either a suitable long-term mean of these (i.e. v̄nm =< v̄nm(t) >tBtA )
or they refer to a reference epoch t0.

In the above, TWS is expressed as a surface density (unit kg
m2 ), the height

of a water column is usually derived by scaling the above by a reference
density of water, i.e. multiplication by 1/ρw. Thus, ρw (if applied) is a reference

quantity which has to be chosen as a convention (usually, ρw = 1000 kg
m3 or

ρw = 1025 kg
m3 . The average density of the Earth, ρe, is related to the Earth’s

mass M by M = 4πρe

3 R3 and follows therefore to ρe = 5517 kg
m3 . Finally, the

k′n are the elastic gravity load Love numbers and follow from 1D-models of
the Earth’s rheologic properties.

 1
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Fig. 1 Shown are the coefficients ρe

3ρw

2n+1
1+k′

n

. It is obvious that, when

computing TWS harmonics from geopotential harmonics, errors in higher
degrees will be amplified compared to those in low-degree coefficients
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Geoid change from geopotential harmonics. In this case, the common approx-
imation is

f̄nm(t) = R (v̄nm(t) − v̄nm)

with the v̄nm as defined above.

1.1 Area Averaging (’Windowing’)

In many applications one is interested in averaging a field over a certain ge-
ographical area or region or basin. This is what we call area averaging or
windowing here.

1.1.1 Exact Windowing

Let us start with a given field F defined on the sphere Ω,

F = F (λ, θ) (1.1)

expressed either in spatial domain or in spherical harmonic representation.

The area O ⊂ Ω can be mathematically expressed through its characteristic
function

O = O(λ, θ) =

{
1 (λ, θ) ∈ O

0 (λ, θ) 6∈ O
(1.2)

(1 inside the area, and 0 outside of it). Its area (size) Ō is

Ō =

∫

O

dω =

∫

Ω

Odω . (1.3)

Windowing F over O means to derive an average

F̄O =
1

Ō

∫

O

Fdω =
1

Ō

∫

Ω

OFdω (1.4)

of F over O.

Remark. If F = F (λ, θ, t) is a spatio-temporal field, the average F̄O(t) will be
a time-series.

Remark. Usually, a polygon O(λi, θi), i = 1 . . . q will be used to characterize
O(λ, θ).

Remark. In practical computations in the space domain, the integrals will be
replaced by discrete sums, introducing a discretization error ǫ whose magni-
tude depends on the spatial grid resolution and the smoothness of both the
function F and the region boundary of O. The discrete version of Eq. (1.4)
can be cast as F̄O = oT f or F̄O(t) = oT f(t) if the field F is time-dependent.

Remark. If F is approximated by a spherical harmonic expansion before pro-
jecting onto a grid and evaluation of the discrete sum, an extra truncation
error is introduced.
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1.1.2 Exact Windowing in Spherical Harmonic Representation

Next, we consider both F and O expanded in 4π-normalized spherical har-
monics Ȳnm.

F =
∞∑

n=0

n∑

m=−n
f̄nmȲnm(λ, θ) (1.5)

O =
∞∑

n=0

n∑

m=−n
ŌnmȲnm(λ, θ) (1.6)

(the overbar in f̄nm etc. tells that coefficients are 4π-normalized). It is imme-
diately clear that

Ō =

∫

Ω

OȲ00dω = 4π Ō00 (1.7)

The exact average of F over O is then

F̄O =
1

Ō00

∞∑

n=0

n∑

m=−n
Ōnmf̄nm (1.8)

or, if ōnm = Ōnm

Ō00

are the region’s SH coefficients further normalized to ō00 = 1,

F̄O =
∞∑

n=0

n∑

m=−n
ōnmf̄nm (1.9)

Example. The first 4π-normalized coefficients of the ocean function are given
in the table.

Table 1.1. Ocean function spherical harmonics

n m Ōnm Ōn −m

0 0 0.701227 · 100 0.000000 · 100

1 0 −0.176689 · 100 0.000000 · 100

1 1 −0.115778 · 100
−0.635533 · 10−1

2 0 0.618996 · 10−2 0.000000 · 100

2 1 −0.450010 · 10−1
−0.717864 · 10−1

2 2 0.471078 · 10−1 0.464998 · 10−2

3 0 −0.355365 · 10−2 0.000000 · 100

3 1 0.518058 · 10−1
−0.251440 · 10−1

3 2 0.691439 · 10−1
−0.992945 · 10−1

3 3 −0.135222 · 10−1
−0.947600 · 10−1

Remark. In practical computations, the spherical harmonic summation will
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be evaluated up to finite degree n̄, and a truncation error results. The exact
average of F over O can be split into

F̄O =
1

Ō00

n̄∑

n=0

n∑

m=−n
Ōnmf̄nm +

1

Ō00

∞∑

n=n̄+1

n∑

m=−n
Ōnmf̄nm . (1.10)

This may be written as F̄O = oT f + ǫ. The second term is the truncation or
omission error. It will vanish if either F or O is band-limited with degree n̄,
or if the high-degree components of F and O are orthogonal on the sphere in
L2-sense.

Remark. If F is truncated at degree n̄, then projected into the space domain
and the integral is evaluated over an exactly delineated area, the above men-
tioned truncation error will occur as well.

1.2 Smoothing of Spherical Harmonic Models

Smoothing or filtering a field is usually applied to suppress ’rough’ or ’oscil-
latory’ or ’noisy’ components.

Consider F according to Eq. (1.1) and Eq. (1.5). A smoothed version is ob-
tained by convolving F against a two-point kernel W with suitable properties.
In the spatial domain,

FW (λ, θ) =

∫

Ω

W (λ, θ, λ′, θ′)F (λ′, θ′)dω (1.11)

and in the spectral domain, in the rather general case of an arbitrarily shaped
window function,

FW (λ, θ) =

∞∑

n=0

n∑

m=−n
f̄WnmȲ (λ, θ) , f̄Wnm =

∞∑

n′=0

n′

∑

m′=−n′

w̄n
′m′

nm f̄n′m′ .

(1.12)
Thus, W (λ, θ, λ′, θ′) describes the weighted contribution of F at point λ, θ
to the windowed function FW at point λ′, θ′. In its discrete version in either
spatial or spectral domain, smoothing will read fW = Wf (up to a truncation
error, which we will omit in the sequel). The f̄Wnm are the SH coefficients of
the smoothed version of F . And the w̄n

′m′

nm are the 4π-normalized spherical
harmonic coefficients of the two-point smoothing kernel

W (λ, θ, λ′, θ′) =

∞∑

n=0

n∑

m=−n

∞∑

n′=0

n∑

m′=−n′

w̄n
′m′

nm Ȳnm(λ, θ)Ȳn′m′(λ′, θ′) . (1.13)

Or, W (λ, θ, λ′, θ′) = yT (λ, θ)Wy(λ′, θ′) with matrix W containing the ele-
ments w̄n

′m′

nm . It is obvious that for fixed λ′, θ′ the w̄n
′m′

nm Ȳn′m′(λ′, θ′) are the
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4π-normalized spherical harmonic coefficients of W (λ, θ), and vice versa; for
fixed λ, θ the w̄n

′m′

nm Ȳnm(λ, θ) are the SH coefficients ofW (λ′, θ). Consequently,
for a given two-point kernel W ,

w̄n
′m′

nm =
1

(4π)2

∫

Ω

∫

Ω′

W (λ, θ, λ′, θ′)Ȳnm(λ, θ)Ȳn′m′(λ′, θ′)dωdω′ . (1.14)

This is the most general case of smoothing.

1.2.1 Isotropic Filters

Most filters that we encounter in the literature are isotropic, i.e. the smoothing
kernel depends only on the spherical distance ψ between the two points λ, θ
and λ′, θ′ and not on their relative orientation. A comprehensive review is [4].
For isotropic kernels, the SH coefficients of the kernel can be reduced to the
Legendre coefficients of a zonal (z-symmetric) function wn. Thus,

W (ψ) =

∞∑

n=0

(2n+ 1)wnPn(cosψ)

=

∞∑

n=0

n∑

m=−n
wnȲnm(λ, θ)Ȳnm(λ′, θ′) = W (λ, θ, λ′, θ′) (1.15)

(with Pn(cosψ) being the unnormalized Legendre polynomials) or

w̄n
′m′

nm = δn
′m′

nm wn . (1.16)

For isotropic filters, smoothing of F can be written as

FW (λ, θ) =

∫

Ω

W (ψ)F (λ′, θ′)dω (1.17)

and in the spectral domain simply f̄Wnm = wnf̄nm and

FW (λ, θ) =

∞∑

n=0

n∑

m=−n
wnf̄nmȲ (λ, θ) . (1.18)

Example. A first example is the boxcar filter, which simply truncates the func-
tion F at SH degree n̄

W(n̄)(ψ) =

n̄∑

n=0

(2n+ 1)Pn(cosψ) , w(n̄)
n =

{
1

0
for

{
n ≤ n̄

n > n̄

Example. A second example is the Gaussian filter, popularized by [19], for
which we know an analytic expression in the spatial domain (’bell-shaped’)
with
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Wd(ψ) = 2b
e−b(1−cosψ)

1 − e−2b
=

∞∑

n=0

(2n+ 1)w(d)
n Pn(cosψ)

with

b =
ln(2)

1 − cos d
R

.

Here, d = Rψd is the ’half-with’ radius parameter where the kernel drops
from 1 at ψ = 0 to 1

2 , which is commonly used to indicate the degree of
smoothing. The Legendre coefficients of the Gaussian filter are found from
recursion relations,

w
(d)
0 = 1 , w

(d)
1 =

(
1 + e−2b

1 − e−2b
− 1

b

)

, w
(d)
n+1 = −2n+ 1

b
w(d)
n + w

(d)
n−1 .

 0.001

 0.01

 0.1

 1

 20  40  60  80  100  120

degree n

Fig. 2 Shown are the Legendre coefficients w
(d)
n for d equalt to 100 km, 500

km and 1000 km.

1.2.2 Anisotropic Filters

Anisotropic filters can be characterized into symmetric (or diagonal) fil-
ters and non–symmetric filters ([14]). A further differentiation among non-
symmetric filters is possible when thinking of the coefficients w̄n

′m′

nm as being
ordered within matrix W (when we use a particular ordering scheme for the
f̄nm, the same has to apply to the filter coefficients).

For symmetric filters, W is diagonal and

w̄n
′m′

nm = δn
′m′

nm wnm . (1.19)

Thus the smoothing kernel has the shape

W (λ, θ, λ′, θ′) =

∞∑

n=0

n∑

m=−n
wnmȲnm(λ, θ)Ȳnm(λ′, θ′) . (1.20)
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It is symmetric with respect to the points λ, θ and λ′, θ′.

Example. Han’s filter ([11]) is of this type. They chose a Gaussian filter with
’order-dependent’ smoothing radius d(m),

wnm = w(d(m))
n , d(m) =

d1 − d0

m1
m+ d0

Example. The ’fan’ ([21]) filter is simply a product of different Gaussian filters
applied to order and degree,

wnm = w(d1,d2)
nm = w(d1)

n · w(d2)
m

In the general case of Eq. (1.12), the filter is non–symmetric with respect to
points λ, θ and λ′, θ′ and its matrix W is full.

Remark. Even if W is symmetric, the resulting filter would be non–symmetric.

Example. The DDK filter ([15], [16]). Here, the filter matrix is derived by
regularization of a ’characteristic’ normal equation system that involves a-
priori information on the signal variance and the observation system from
which we obtain the unfiltered coefficients,

W(α) = LαN = (N + αM)−1N

or

w̄n
′m′(α)
nm =

∞∑

n=0

n∑

m=−n
Ln

′′m′(α)′

nm Nn′m′

n′′m′′

with M being an approximation to Cf = E{ffT }, N being an approxima-

tion to C
f̂

= E{f̂ f̂T }, and L
n′′m′(α)′

nm , Nn′m′

n′′m′′ the corresponding elements. In
addition, α is a damping parameter. The DDK filters are non-symmetric. In
[16] it was shown that the original W(α) of [15] can be safely replaced by a
block-diagonal version of the matrix.

Example. The ’Swenson and Wahr’ filter ([20]) is non-symmetric and it can
also be represented by a block-diagonal W. The idea of this filter is that an
empirical model for the correlations between SH coefficients f̄nm of the same
order and parity is formulated and then used for decorrelation.

Example. EOF filtering means one applies PCA to a time series fi of either
gridded values of F or SH coefficients. A reconstruction with q modes provides

f (q) = EI(q)ET f̄ = W(q)f

where E contains the EOFs of the time series and I(q) is a diagonal matrix
with unity in the first q entries and zero otherwise. EOF filtering corresponds
to application of a non-symmetric filter as well.
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1.3 Smoothed Area Averaging

Now let us come back to the windowing of a spherical harmonic model F , i.e.
we wish to average F over the region O. Of course we can window a smoothed
version FW of F as well, if necessary.

Another view on the same operation is as follows: In place of Eq. (1.2), we
may introduce a smoothed area function OW ,

OW (λ, θ) =

∞∑

n=0

n∑

m=−n
ŌWnmȲnm(λ, θ) =

1

4π

∫

Ω

W (λ, θ, λ′, θ′)O(λ′, θ′)dω′ ,

(1.21)
and we will apply OW to the original function F

F̄OW
=

1

ŌW

∫

Ω

OWFdω (1.22)

(note that ŌW = Ō if the filter is normalized, see below). In general, the
smoothing kernel W is a two-point function on the sphere, cf. Eq. (1.3).

1.3.1 Spherical Harmonic Representation

In case of Eq. (1.15), i.e. W is isotropic, the smoothed area function can be
written as

OW (λ, θ) =

∞∑

n=0

n∑

m=−n
ŌWnmȲnm(λ, θ) (1.23)

with
ŌWnm = w̄nŌnm . (1.24)

The smoothed area average is found in the spectral domain as

F̄OW
=

1

ŌW00

∞∑

n=0

n∑

m=−n
wnŌnmf̄nm . (1.25)

The choice w0 = w̄00
00 = 1 (’filter normalization’) guarantees that

1

4π

∫

Ω

OW dω = ŌW00 = Ō00 =
1

4π

∫

Ω

Odω . (1.26)

I.e. the ’area’ of the smoothly varying window OW equals to the area of O.

But, the smoothing kernel will inevitably ’leak’ energy beyond the original
region. I.e.

1

4π

∫

Ω

OW dω =
1

4π

∫

O

OWdω +
1

4π

∫

Ω/O

OW dω . (1.27)

The above can be transferred to the more general case of non-isotropic smooth-
ing without any problem.
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1.3.2 Amplitude Damping (’Bias’)

For a given area O, windowing or smoothing will decrease the amplitude of
the average F̄W with respect to the original average F̄ . What causes this
reduction is best understood by explicitly writing down the ’reduction factor’
βO,W,F , which we define as

βO,W,F =
F̄OW

F̄O
(1.28)

and which is specific for a certain area O, a certain window kernel W , and an
input function F . For an isotropic smoothing kernel,

βO,W,F =
Ō

ŌW

∫

Ω

OWFdω
∫

Ω

OFdω

=
1

w0

∞∑

n=0

n∑

m=−n
wnŌnmf̄nm

∞∑

n=0

n∑

m=−n
Ōnmf̄nm

(1.29)

and for w0 = 1

βO,W,F = 1 − 1

Ō00F̄O

∞∑

n=1

n∑

m=−n
(1 − wn) Ōnmf̄nm (1.30)

The reduction factor clearly depends on the basin shape, the filter coefficients,
and the signal itself.

Example. For w0 = 1 and F = c, where c is a constant (i.e. the signal is
constant over the whole sphere), β is exactly one, i.e. no damping occurs at
all.

Example. For w0 = 1 and F = c · O(λ, θ) (the signal is constant over the
area O, and exactly zero outside), the damping factor becomes (considering
∫

Ω
O2dω =

∫

Ω
Odω = Ō00)

βO,W,c·O = 1 − 1

c · Ō00

∞∑

n=1

n∑

m=−n
(1 − wn) Ō2

nm

Example. In ([15]), a ’standard damping factor’ (’scaling bias’) is defined for
smoothing a constant signal over a spherical cap area, and numbers are pro-
vided for Gaussian and DDK filters of different degree of smoothing and at
different geographical latitudes.

1.4 Filter Shape

1.4.1 Impulse Response

For comparing smoothing kernels in the spatial domain, it is helpful to map a
kernel’s impulse response. This can be best understood when we imagine an
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area O shrinks to a point on the sphere. By letting the basin function degrade
to a Dirac function (we want to see the smoothing effect for a particular
location λ′, θ′), we obtain

Oδ(λ, θ) = δλ
′,θ′(λ, θ) =

{∞
0

for
λ′ = λ, θ′ = θ

otherwise
(1.31)

and

Ōδnm =
1

4π

∫

Ω

δλ
′,θ′(λ′′, θ′′)Ȳnm(λ′′, θ′′)dω = Ȳnm(λ′, θ′) . (1.32)

Remark. Eq. (1.32) is very helpful in practical applications, since one only has
to compute the Ȳnm(λ′, θ′). Or, with the spherical harmonic representation of
the Dirac,

Oδ(λ, θ) =

∞∑

n=0

n∑

m=−n
Ȳnm(λ′, θ′)Ȳnm(λ, θ) . (1.33)

Consequently, the impulse response of the most general non-isotropic two-
point kernel W will be

OδW (λ, θ) =
∞∑

n=0

n∑

m=−n

∞∑

n′=0

n′

∑

m′=−n′

w̄n
′m′

nm Ȳn′m′(λ′, θ′)Ȳnm(λ, θ) . (1.34)

And for an isotropic kernel

OδW (λ, θ) =

∞∑

n=0

n∑

m=−n
wnȲnm(λ′, θ′)Ȳnm(λ, θ) . (1.35)

1.4.2 Localization

The localization of an isotropic smoothing kernel can be best measured by its
’half-with’ radius, i.e. the distance d = Rψd where the kernel drops from 1 at
ψ = 0 to 1

2

W (ψd) =
1

2
. (1.36)

For non-isotropic kernels, measuring the localization is more difficult. Unlike
with isotropic kernels, it will depend on the particular location λ′, θ′. There,
one might compute the half-with radius in two directions - North and East.

Following [17] and[1], [15] introduced the variance σW of the squared nor-
malized window function W (λ, θ) at location λ′, θ′ as a single measure for its
localization properties. The variance is the second centralized moment of a
probability density function defined on the sphere; it is an integral measure
for the spreading about the expectation and it is independent of introducing
a particular coordinate system on the sphere.
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We suppose with [1] that W 2 has been normaized,

∫

Ω

W 2(λ′, θ′)dω =
∞∑

n=0

n∑

m=−n

(

w̄n
′m′

nm Ȳn′m′(λ′, θ′)
)2

= 1 . (1.37)

The integration in the first term applies to λ, θ. Normalization is required in
order to interprete W as a probability density function. The expectation in
the space domain is introduced ([1]) via

µW =

∫

Ω

e W 2 dω (1.38)

where e = (sin θ cosλ, sin θ sinλ, cos θ)T is the unit vector pointing from the
origin to a location on Ω. If W 2(λ, θ) (for given λ′, θ′) is thought to represent
a surface density distribution, µW points to its center of mass (which is inside
of Ω).

As the unit vector can be represented through the unnormalized degree-1
spherical harmonics

e = (Y11, Y1 −1, Y10)
T (1.39)

we can write the components of µW as

µW ;x =

∫

Ω

W 2Y11dω = (W 2)11 µW ;y = (W 2)1 −1 µW ;z = (W 2)10 .

(1.40)
The variance of W (λ, θ) is introduced in the usual fashion, i.e. as the expec-
tation of (e − µW )2

σ2
W =

∫

Ω

(e− µW )2W 2dω (1.41)

Because of (e − µW )2 = 1 + (µW )2 − 2eTµW and
∫
−2eTµWW

2dω =
−2(µW )2, the variance is simply

σ2
W = 1 − (µW )2 = 1 −

1∑

m=−1

(
(W 2)1m

)2
. (1.42)

and its computation requires only the computation of the degree–1 harmonics
of W 2.

The degree–1 harmonics of W 2 may be computed directly, involving the
Clebsch-Gordon coefficients, or simply by projecting the normalized W 2 onto
a grid and subsequent spherical harmonic analysis.



2

Principal Component Analysis and Related
Ideas

Products of geodetic observing systems (GRACE, altimetry) and geophysical
modelling are most often represented in form of time series of spatial maps
(total water storage, sea level anomalies,. . . ). The user of these products will
often find a few spatial pattern dominating the variability within these maps.
Identifying these pattern can aid in physical interpretation, comparison of
different data sets, and removing unnecessary small-scale signals or noise.
Eigenspace techniques as the principal component method are among the
most popular analysis techniques supporting these objectives. The purpose
of this chapter is to describe the mathematical concepts behind the principle
component analysis (PCA), to introduce some alternative formulations, and
to make the reader aware of some of the many choices to be made by the
analyst.

2.1 Principle Component Analysis

2.1.1 PCA as a Data Compression Method: Mode Extraction and
Data Reconstruction

Sampling spatio-temporal fields can lead to huge amounts of data. For exam-
ple, a field observed or modelled on a 1◦×1◦ grid, with a time step of one day,
provides already more than 23 · 106 data elements for one year of data. It is
now a challenging task to reduce the dimensionality of the data vector and to
identify the most important patterns explaining the variability of the system.
The Empirical Orthogonal Functions (EOF) technique, also called Principal
Component Analysis (PCA), has become one of the most widely used meth-
ods. General references are [6] and [7]. In pattern analysis, PCA is also known
as Karhunen-Loeve transform or Hotelling transform.

PCA has been used extensively to extract individual dominant modes of the
data variability, while simultaneously suppressing those modes connected with
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low variability and therefore reducing the number of data efficiently. The
physical interpretability of the obtained pattern (i.e. in terms of independent
physical processes) is, however, a point of discussion as the obtained modes
are by definition orthogonal in space and time and this is not necessarily so
in reality.

Consider the n× 1 data vector y, given for p time epochs ti,

yi =








y1;i
y2;i
...
yn;i








i = 1 . . . p . (2.1)

Typically, yi contains the values of an observed or modelled field in n locations
(the nodes of a two–dimensional grid or a set of discrete scattered observation
sites; but the yi could also contain n spherical harmonic coefficients), at time
ti. We will assume that the data are centered, i.e. the time average per node
1
p

∑p
i=1 yj;i is already reduced from the observations yj;i, or

1

p

p
∑

i=1

yj;i = 0 (2.2)

Another way to look at eq. (2.1) is to decompose the data vector yi = Iyi
according to the individual locations,

yi = y1;i








1
0
...
0








+ y2;i








0
1
...
0








+ · · ·+ yn;i








0
0
...
1








= y1;iu1 + y2;iu2 + · · ·+ yn;iun .

(2.3)
The basis vectors uj are independent of time, orthogonal, normalized with
respect to the standard scalar product (a,b) = aTb, and they are each asso-
ciated with an individual location. One may interprete the original observa-
tions yj;i as coordinates in an “observation space” with regard to the trivial
unit basis uj , in an n-dimensional vector space. Clearly, this interpretation
suggests that other bases and other coordinates might be useful as well. The
following will lead to a different choice of basis.

We collect all yi in the n× p data matrix Y (assuming in what follows that
the data is complete in the sense that for every location j there exists a data
value yj;i for any epoch ti). With other words, we assume for every location
in the set there exists an uninterrupted time series of observations. The data
matrix is then
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Y = (y1,y2, . . . ,yp) =








y1;1 y1;2 . . . y1;p
y2;1 y2;2 . . . y2;p
...

...
...

yn;1 yn;2 . . . yn;p








. (2.4)

Its rows contain the time series per location, whereas its columns contain the
entire data from all locations per time epoch.

We might be weighting the data matrix, e.g taking the individual accuracy of
the data at different locations into account, or according to the latitude of the
nodes. In this case, the homogeneized data matrix becomes Ȳ = YG, where
GGT = P is the weight matrix.

The n× n signal covariance matrix C contains the variances and covariances
(i.e. second central moments) of the data viewed as time series per location.
From the data samples yi, it can be estimated (empirically) as

C =
1

p
YYT =

1

p








∑p
i=1 y

2
1;i

∑p
i=1 y1;iy2;i . . .

∑p
i=1 y1;iyn;i

∑p
i=1 y2;iy1;i

∑p
i=1 y

2
2;i . . .

∑p
i=1 y2;iyn;i

...
...

...
∑p

i=1 yn;iy1;i
∑p

i=1 yn;iy2;i . . .
∑p
i=1 y

2
n;i








, (2.5)

or using the weighted matrix Ȳ instead. Note that the signal covariance matrix
C′ = 1

nYTY, in contrast, contains the spatial variance and covariances of the
data viewed as a function of position, for any ti: there the sum extends over
the n locations. Adding all the n individual variances from the time series
provides what is often called the total variance,

∆2 =
1

p

n∑

j=1

(
p
∑

i=1

y2
j;i

)

= trace(C) . (2.6)

An alternative way to decompose the data vector is given by the eigenvalue
decomposition of the signal covariance matrix C

C = EΛET (2.7)

where Λ is a diagonal matrix containing the n eigenvalues λi, and the columns
of the orthogonal n× n matrix E contain the corresponding eigenvectors ei.
The sum of all eigenvalues equals to the matrix trace, and therefore to the
total variance

n∑

j=1

λj = ∆2. (2.8)

We assume the eigenvalues and eigenvectors are ordered according to the
magnitude of the eigenvalues; i.e. λ1 is the largest one. Then, one can state
that each eigenvalue “explains” a fraction
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ηj =
λj
∆2

(2.9)

of the total variance, with the first eigenvalue explaining the largest part and
so on. The eigenvalues of C = 1

pYYT equal to 1√
p times the singular values

of the data matrix Y. The SVD of the data matrix can be written

Y = E∆D̄ , (2.10)

where of course now

λj =
1

p
∆2
j (2.11)

We will come back later to the n × n diagonal matrix ∆ and the n × p
orthogonal matrix D̄.

Principle component analysis replaces the basis uj by the eigenvectors ej of
C as the vector basis for representing the original observations yi. One has to
adopt a convention about the scaling of the eigenvectors, and in what follows
we will assume they are normalized,

eTj ej = 1 , (2.12)

and their first entry is positive

e1;j > 0 (2.13)

just as it was the case for the original basis uj . In the same way as the uj can
be associated with a discrete version of a delta function (they point exactly at
the j-th data location with a value of one there, and zero values otherwise), the
ej can be viewed as discrete version of a function which describes common
pattern in the entire data. They are called empirical orthogonal functions
(EOFs) or simply ’modes’. The first EOF e1 contains thus the dominant
pattern (that is, if λ1 is distinctly larger than the other eigenvalues). If the
original data is provided on two-dimensional gridded locations, it is common to
visualize the corresponding EOFs on this grid. Then, the principal component
representation of the n× 1 data vactor at ti, i = 1, . . . , p is

yi = d1;ie1 + d2;ie2 + · · · + dn;ien =

n∑

j=1

dj;iej = Edi (2.14)

where the “principal components” (PCs) or PC scores dj;i are determined
from projecting the original data onto the new basis

dj;i = eTj yi . (2.15)

The dj;i can be viewed upon as time series, i = 1 . . . p, wheras the index j
points at the pattern ej where the time series is associated with. Or,
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di = ETyi . (2.16)

Since ETE = I, this can be written as di = (ETE)−1ETyi as well. As the
ordering is according to the magnitude of the eigenvalues, it is often sufficient
to compute only a few, say n̄, of the dj;i. The reconstructed data will then
still exhibit the largest part of the total variablity:

ȳi =

n̄∑

j=1

dj;iej . (2.17)

By this construction, EOFs constitute (normalized) spatial patterns whose
amplitude evolution is given by the corresponding PC. The EOF itself does
not change in time.

Remark. In other words, PCA decomposes the original data into time-invariant
(’standing’) spatial pattern, which are scaled by the corresponding time-
variable PC. Therefore, PCA is not suitable for discovering propagating pattern
in the data, since those will be distributed over several standing modes in the
analysis.

Remark. Since the data are assumed as centered, one may say that PCA makes
use of the second central moments of the data (only) to decorrelate them.

Remark. From the point of view of estimation theory, Eq. (2.5) assumes that
the data are perfectly centered. In practice, one will probably compute and
remove the sample mean of the time series. Then, in Eq. (2.5), one might use

1
p−1 in place of 1

p in order to unbiasedly estimate the second central moments.
It does not matter for the computation of the EOFs and the PCs, since the
EOFs will be normalized (Eq. 2.12) anyway and the PCs follow from the nor-
malized EOFs and the data.

Remark. The reconstructed data, Eq. (2.17) can be expressed by

ȳi = EI(n̄)ETyi

where I(n̄) is a diagonal matrix with unity in the first n̄ entries and zero
otherwise, I.e., decomposition and partial reconstruction can be viewed as a
linear operation (in first order at least).

From Eq. (2.14), it is clear that the data matrix Y is referred to the EOFs by

Y = ED , (2.18)

where the rows of D now contain the PCs for all EOFs (e.g., the first row
contains the temporal evolution of the first EOF), and the columns of D
contain the PC vectors di (each vector contains the temporal amplitude of all
EOFs for one particular epoch). With other words, we write
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D = (d1,d2, . . . ,dp) =








d1;1 d1;2 . . . d1;p

d2;1 d2;2 . . . d2;p

...
...

...
dn;1 dn;2 . . . dn;p








.

Then, for the total variance

∆2 = trace
(
EDDTET

)
= trace

(
DTDT

)
=

n∑

j=1

p
∑

i=1

d2
j;i . (2.19)

The aim of PCA is to find a linear combination of the original data nodes that
explains the maximum variability (variance) of the data. This means, we are
searching for the mode e such that Ye has maximum variance. The variance
of the centered time series Ye is

1

p
(Ye)T (Ye) =

1

p
eTCe . (2.20)

Usually we require e to be normalized. The task is then to maximize Eq. (2.20)
subject to eTe = 1. The solution to this problem is the eigenvalue problem
Ce = λe, with eigenvectors ei and eigenvalues λi as introduced earlier.

However, the data vectors yi will contain a random error, and such will the
eigenvalues and eigenvectors derived from the data matrix. This has to be
considered in particular if eigenvalues are close to each other.

2.1.2 Temporal PCA versus Spatial PCA

PCA as described above is sometimes called temporal PCA, since it departs
from the correlations between time series of data (which are contained in
the n × n covariance matrix C). On the other hand, it is perfectly valid to
consider, for the same data set, the spatial correlations and built the p × p
spatial covariance matrix C′ = 1

nYTY, or

C′ =
1

n
YTY =

1

n








∑n
j=1 y

2
j;1

∑n
j=1 yj;1yj;2 . . .

∑n
j=1 yj;1yj;p∑n

j=1 yj;2yj;1
∑n

j=1 y
2
j;2 . . .

∑n
j=1 yj;2yj;p

...
...

...
∑n

j=1 yj;pyj;1
∑n

j=1 yj;pyj;2 . . .
∑n

j=1 y
2
j;p








.

(2.21)
In fact, if p << n, storing C′ requires much less memory space compared to
storing C.

PCA based upon C′ is called spatial PCA. Of course, temporal and spatial
PCA are closely related: C and C′ are of different dimension but they share
the same eigenvalues (apart from a factor that depends only on n and p).
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An eigenvalue decomposition (and comparison with the decomposition of C)
reveals

C′ =
p

n
D̄TΛD̄ (2.22)

where we have D̄ = ∆−1ETY = ∆−1D.

It is thus obvious that the k-th EOF of the spatial PCA (k-th column of D̄T )
corresponds to the k-th PCs of the temporal PCA. Alternatively, this can be
seen as follows: From

Cej = λjej

follows
n

np
YTYYT ej = λjY

T ej

and the eigenvectors of C′ can be read off as YT ej. Thus

E′ = YTE = D = ∆D̄ .

2.1.3 PCA of Linearly Transformed Data

It is interesting to consider the PCA of a set of linearly transformed m × 1
data vectors

zi = Ayi, i = 1 . . . p (2.23)

with m× n matrix A. Again p is the number of time epochs. The number of
data nodes m might be larger, equal or less than n.

Example. The original data might contain spherical harmonic coefficients of
a field, and the transformed data contain gridded values. In this case m > n
is not uncommon. Matrix A contains the spherical harmonics for each given
coefficient evaluated for each grid node.

Example. The original data contain values on a global grid of certain spacing.
We ask in how far the EOFs and PCs on a local subgrid, i.e. for some region
of the globe, will differ from those evaluated from the global data set. In this
case, m < n and the matrix A equals to the identity matrix, with its rows
removed for all nodes that are not present in the local subgrid.

Obviously the transformed data matrix is Z = AY. Furthermore we have

Cz =
1

p
ZZT =

1

p
AYYTAT = AEΛETAT (2.24)

where E and Λ contain the eigenvectors and eigenvalues of the original data
covariance matrix. Obviously, the eigenvectors and eigenvalues of Cz will differ
from those of C, meaning that both the EOFs and the PCs of the transformed
data will differ from those of the original data (unless in some special cases).

Let µi be the eigenvalues of ATA. For the eigenvalues of Cz = ACAT , which
equal to the eigenvalues of CATA, the following inclusion holds ([5])
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λzi ∈ [min(µi) · min(λi),max(µi) · max(λi)] (2.25)

This illustrates clearly, how the spectrum of the transformed data is widened
by the spectrum of ATA.

2.1.4 PCA as a Data Whitening Method: Homogeneization

Obviously, one can interprete the PCs as a ’whitened’ version of the original
data. To make this clear, we will consider instead of

di = ETyi (2.26)

the homogeneized PCs d̄j;i = 1√
λi

dj;i, or

d̄i = Λ− 1

2 di = Λ− 1

2 ETyi = ĒTyi . (2.27)

Here, we have introduced the column-by-column scaled matrix Ē = EΛ− 1

2 .

Remark. It is clear by now that the homogeneized PCs d̄i are the column
vectors of the SVD matrix D̄.

The scaled EOFs are not of unit length anymore, but still orthogonal,

ĒT Ē = Λ−1 . (2.28)

The signal covariance matrix of the original data yi is C = EΛET , thus the
covariance of the PCs will be

Cd = ETEΛEET = Λ , (2.29)

or, for clarity,
p
∑

i=1

d2
j;i = λj .

And the signal covariance of the homogeneized PCs will be

Cd̄ = Λ− 1

2 ETEΛEETΛ− 1

2 = I . (2.30)

From the last two expressions, it is obvious that the PCs and the homo-
geneized PCs are uncorrelated, with the latter ones also being of unit vari-
ance. Therefore, the (homogeneized) PCA is often viewed as a data whitening
transformation. The homogeneized EOFs are directly obtained from applying
the rescaling to the original eigenvectors

ēj =
1
√
λj

ej , (2.31)

of the data.
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2.1.5 Number of Modes

In many applications of PCA, we will avoid to retain all n modes, but rather
use a subset of n̄ dominant ones. The reasoning can be different: We may
want to compress the data, or we may want to get rid of those modes that
supposedly contain noise. Or, PCA is just considered as a preprocessing and
we will subsequently apply e.g. rotation on the dominant modes. Let J̄ =
{j1, j2, . . . jn̄} denote the index set of all modes to be retained, i.e.

ȳi =
∑

j∈J̄
dj;iej .

A rule that determines J̄ is called a selection rule.

It has been suggested by Eq. (2.9) that each eigenvalue of the data covariance
explains a certain fraction of the total variance ∆2, Eq. (2.6). This indicates
that the strategy to choose a reasonable subset of modes could simply be

J̄ = {j|
∑

j∈J̄
ηj > ǫ} .

This strategy is by far the most often followed one, with a typical threshold
value of 0.9.

A selection rule (North’s rule) that is often considered goes back to [18]. It is
based on the perception that the data yi represent independent realizations
or samples of a random field with unknown stochastic moments. From these
realizations, one will be able to reconstruct the true covariance C′ only up to
an error that depends on C′ and the number n of data realizations. With other
words, C as computed through Eq. (2.5) will be considered as a stochastic
quantity being contaminated by an error whose covariance can be estimated
from C and n. Therefore, the eigenvalues and eigenvectors of C have to be
considered as stochastic as well. [18] proceed to show that ’typical’ errors of
neighbouring eigenvalues and eigenvectors will then be

δλj =

√

2

n
λj + · · · δej =

δλj
λk − λj

ek + · · ·

’Neighbouring’ means that λk is the eigenvalue numerically closest to λj . This
selection rule says that if the ’typical’ error of an eigenvalue is comparable to
the difference of this eigenvalue to its neighbour, then the ’typical’ error of
the corresponding EOF will be of the size of the neighbouring EOF itself. One
will then tend to disregard this mode in the reconstruction. Or,

J̄ = {j|δλj < |λk − λj | = min
i6=j

|λi − λj |} .

Several other selection rules have been proposed since then, based on different
principles. More recently, Monte Carlo methods have been applied frequently
to test the statistical significance of modes.
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2.1.6 PCA as a Tool for Comparing Multiple Data Sets

We are often interested in comparing multiple data sets, e.g. satellite-derived
vs. modelled, or different model output data sets. Several statistical algorithms
allow to derive correlation measures, similarities and joint pattern and so on.
Here, we will only focus on the application of the PCA as described before in
such a situation.

Consider the n × 1 vector y, given for p time epochs ti, and extracted from
M different data sets, or

y
(m)
i =









y
(m)
1;i

y
(m)
2;i
...

y
(m)
n;i









i = 1 . . . p , m = 1 . . .M , (2.32)

which we may recast in a ’super data matrix’

X =
(

Y(1),Y(2), . . . ,Y(m)
)

. (2.33)

If all data vectors are considered as equally good, bias-free (i.e. centered
free of errors), and describing the same phenomena apart from unavoidable
data/model errors, i.e. as independent realizations of the same data vector,
one may simply compute the covariance matrix

C =
1

pM
XXT (2.34)

and go on as described before.

If we suspect that different sensors or models see different phenomena, which
is to say the data are not coming from the same p.d.f., one may of course apply
PCA on each data set independently. This provides M covariance matrices
C(m). A comparison is then hampered by the fact that each data set will be

represented in its own basis e
(m)
j . To facilitate comparison, one may project

all data sets onto the basis derived from C or from one of the data sets (maybe
the one we trust most), say. from C(m∗). This is, we compare the data sets on
the level of principle componets with a joint basis,

d
(m)
i = ETy

(m)
i (2.35)

or
d

(m)
i = E(m∗)Ty

(m)
i . (2.36)
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2.1.7 Rotation

Rotated EOF is a technique which attempts to overcome some common short-
comings of PCA. For example, the mathematical constraints (orthogonality of
EOFs and uncorrelatedness of PCs) of PCA, in connection with the depen-
dence of the computation doamin (see ’PCA of Linearly Transformed Data’)
may render the modes found in data difficult to interprete. Physical modes
may not necessarily be orthogonal and thus leak into several different mathe-
matical modes in PCA. REOF is a technique which sacrifies either orthogonal-
ity of the EOFs or uncorrelatedness of the PCs, while adding new optimization
criteria that seek to find physically plausible modes.

Rotated homogeneized EOFs

An understanding of the idea of REOF starts with the observation that,
viewed as a whitening transformation, PCA with the basis vectors ēj is not
unique. To see this, the data vectors yi, with covariance C are expressed by

yi = EΛ
1

2 d̄i . (2.37)

It is possible to replace the d̄i by any set of i = 1, . . . , p rotated n× 1 homo-
geneized PCs,

r̄i = Vd̄i (2.38)

with n× n orthogonal matrix V, i.e. VTV = I. Then,

Cr̄ = VVT = I . (2.39)

We have
d̄i = VT r̄i (2.40)

and
yi = EΛ

1

2 VT r̄i = ĒΛVT r̄i . (2.41)

It is obvious that the data covariance C = EΛ
1

2 VT (EΛ
1

2 VT )T ) = EΛET

does not depend on V. Hence, the transform yi = EΛ
1

2 VT r̄i = ĒΛVT r̄i
with rescaled and rotated PCs whitens the data as good as the original ho-
mogeneized PCs. The rotated basis vectors (or rotated EOFs) are now the

column vectors of F̄ = EΛ
1

2 VT = ĒΛVT .

We have seen in Eq. (2.40) that the rotated homogeneized PCs have diagonal
and equal covariance, just as the original homogeneized PCs,

Cr̄ = C
d̄

= I .

The PCs, viewed as time series per EOF, are uncorrelated and they do not
loose this property when an arbitrary orthogonal rotation is applied to the
EOFs. The rotated homogeneized EOFs, however, will not be orthogonal any-
more,

F̄T F̄ = VΛ
1

2 ETEΛ
1

2 VT = VΛVT . (2.42)
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Rotated EOFs

On the other hand, one can define rotated EOFs by straight application of an
orthogonal matrix V to the EOFs E,

F = EVT (2.43)

i.e. without homogeneizing the PCs first. The data is then represented through
rotated PCs,

yi = FT ri . (2.44)

In this case, the rotated EOFs remain orthogonal, since

FTF = VETEVT = I . (2.45)

But now, the i = 1, . . . , p rotated PCs

ri = Vdi = FTyi (2.46)

loose the property of being uncorrelated since

Cr = VΛVT . (2.47)

In summary, by rotation either the orthogonality of the EOFs or the uncor-
relatedness of the PCs will be destroyed.

Rotation principles

So far, nothing has been said regarding the particular choice of an orthogonal
matrix V in EOF and PC rotation. All orthogonal V are able to reproduce
the data, whereas only for V = I both orthogonality in space and time can
be preserved. Which one (in space or time) we sacrify by rotation, depends
upon application to homogeneized or original EOFs and PCs.

In REOF, one usually specifies an optimization criterion F(V) in terms of
rotated EOFs or rotated PCs, to be met subject to the condition VVT = I.

In other words, an orthogonal n×n matrix has n(−1)
2 degrees of freedom and

these have to be chosen such as to optimize F(V).

When we have
F = EVT

with elements fj;i of the jth rotated EOF, the following family of VARIMAX
criteria is in use

F(V) =

n∑

i=1






n∑

j=1

f4
j;i −

γ

n





n∑

j=1

f2
j;i





2



 . (2.48)
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The quantity inside the summation is proportional to the variance of the
square of the rotated EOFs fj (for γ = 1). This variance will be big if some
values fj;i are close to 1 and many are near 0. Consequently, it is often claimed
that the varimax rotation attempts to ’simplify’ the patterns by localizing the
’regions of action’.

In practice, one will rotate only the first n̄ EOFs corresponding to the largest
singular values, then the above reads

F(V) =

n̄∑

i=1






n∑

j=1

f4
j;i −

γ

n





n∑

j=1

f2
j;i





2



 . (2.49)

2.2 Independent Component Analysis

We follow [12]. Consider orthogonal EOF rotation with homogeneized PCs,
i.e

r̄i = Vd̄i (2.50)

for i = 1, . . . p time steps. Collecting the n × 1 vectors of homogeneized PCs
in n× matrices D̄ and R̄, this is

R̄ = VD̄ , (2.51)

and the rotated EOFs will be

F̄ = EΛ1/2V . (2.52)

For any orthogonal V the rotated homogeneized PCs r̄i are uncorrelated and
of unit variance, i.e. as a time series in i

p
∑

i=1

r̄2j;i = 1 j = 1 . . . , n

p
∑

i=1

r̄j;ir̄k;i = 0 j 6= k

In [12] it is suggested to choose V such that the r̄i are close to being inde-
pendent.

Independence is stronger than uncorrelatedness, and defining (and testing) it
requires to involve higher moments of the pdf of the r̄j;i. Different criteria are
in use in the literature on Independent Component Analysis (ICA).

The line of reasoning in [12] is as follows. If r̄j;i and r̄k;i are independent, then
the time series of the squares r̄2j;i, r̄

2
j;i should be uncorrelated (after centering),

or
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p
∑

i=1

(

r̄2j;i −
1

p

p
∑

l=1

r̄2j;l

)(

r̄2k;i −
1

p

p
∑

l=1

r̄2j;l

)

= 0 j 6= k .

This can be written in matrix notation. Let ⊙ denote the Hadamard matrix
product, i.e.

R̄ ⊙ R̄ =








r21;1 r
2
1;2 . . . r

2
1;p

r22;1 r
2
2;2 . . . r

2
2;p

...
...

...
r2n;1 r

2
n;2 . . . r

2
n;p








and let H = H2 be the p× p centering matrix (with i = (1, 1, . . . , 1)T )

H = I− 1

p
iiT .

Then, for independent time series r̄j;i the (empirical) covariance matrix of the
centered squares

Cr2 =
1

p

(
(R̄ ⊙ R̄)H

) (
(R̄ ⊙ R̄)H

)T
=

1

p
(R̄ ⊙ R̄)H(R̄ ⊙ R̄)T (2.53)

must be diagonal.

In other words, an ICA approach can be constructed by defining an objective
function F(V) that penalizes off-diagonal elements of Cr2 . ICA will then seek
a rotation matrix V through optimization of F(V).

Remark. The above idea ([12]) makes use of fourth statistical moments, but
other moments may be used for defining an objective function as well.
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Appendix

3.1 Spherical Harmonics

Spherical harmonic series

It is common to represent real-valued phenomena on the sphere as spherical
harmonic series

F (λ, θ) =

∞∑

n=0

n∑

m=0

(Cnm cosmλ+ Snm sinmλ)Pnm(cos θ) (3.1)

with longitude λ, colatitude θ, the spherical harmonic degree n and order m,
where n ≥ m ≥ 0, the spherical harmonic coefficients Cnm and Snm, and the
associated Legendre functions of the first kind Pnm.

Legendre polynomials and associated Legendre functions

The associated Legendre functions of degree n and order m, n ≥ m ≥ 0, can
be expressed through the m–th derivatives of the Legendre polynomials of
degree n, Pn = Pn0, with respect to t = cos θ,

Pnm(t) =
(
1 − t2

)m/2 dmPn(t)

dtm
, (3.2)

which may be written as

Pnm(cos θ) = sinm θ
dmPn(cos θ)

d(cos θ)m
. (3.3)

They fulfill the differential equation

(1 − t2)
d2Pnm
dt2

− 2t
dPnm
dt

+

(

n(n+ 1) − m2

1 − t2

)

Pnm = 0 (3.4)

or
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d

dθ

(

sin θ
dPnm
dθ

)

+

(

n(n+ 1) sin θ − m2

sin θ

)

Pnm = 0 . (3.5)

Note that sometimes (e.g. [3]) the associated Legendre functions are defined as
Pmn = (−1)mPnm. The Rodrigues formula expresses the Legendre polynomials
Pn of degree n through the n–th derivatives of (1 − t2)n = sin2n θ,

Pn(t) =
1

2nn!

dn(t2 − 1)n

dtn
(3.6)

they satisfy the differential equation

n(n+ 1)Pn − 2t
dPn
dt

+ (1 − t2)
d2Pn
dt2

= 0 (3.7)

or

n(n+ 1)Pn +
1

sin θ

d

dθ

(

sin θ
dPn
dθ

)

= 0 . (3.8)

An expansion of the Legendre polynomials and associated Legendre functions

Table 3.1. Legendre polynomials and associated Legendre functions

n m Pnm

0 0 1
1 0 cos θ

1 1 sin θ

2 0 1

2
(3 cos2 θ − 1) = 1

4
(3 cos 2θ + 1)

2 1 3 sin θ cos θ = 3

2
sin 2θ

2 2 3 sin2
θ

3 0 1

2
(5 cos3 θ − 3 cos θ) = 1

8
(5 cos 3θ + 3 cos θ)

3 1 sin θ( 15

2
cos2 θ −

3

2
) = 3

4
sin θ(5 cos 2θ + 3)

3 2 15 sin2
θ cos θ = 15

2
sin θ sin 2θ

3 3 15 sin3
θ

into trigonometric series reads

Pnm(cos θ) = sinm θ

int(n−m

2 )
∑

q=0

Tnmq cosn−m−2q θ , (3.9)

where int(x) means the integer part of x, and the coefficients Tnmq are given
by ([10],[9])

Tnmq =
(−1)q(2n− 2q)!

2nq!(n− q)!(n−m− 2q)!
. (3.10)

Relations (3.2) and (3.2) can be combined to
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Pnm(t) =

(
1 − t2

)m/2

2nn!

dn+m(t2 − 1)n

dtn+m
. (3.11)

This is being used to define associate Legendre functions Pnm of negative
order m; 0 > m ≥ −n. The relation between Pnm and Pn,−m is ([8])

Pn,−m(t) = (−1)m
(n−m)!

(n+m)!
Pnm (3.12)

Pnm(t) = (−1)m
(n+m)!

(n−m)!
Pn,−m . (3.13)

Alternative notations for the real-valued spherical harmonic series

There are 2n+ 1 spherical harmonics of degree n. Another way to write eq.
(3.1) is

F (λ, θ) =

∞∑

n=0

n∑

m=−n
fnmYnm(λ, θ) (3.14)

with fnm = Cnm for m ≥ 0, fnm = Sn|m| for m < 0, and

Ynm(λ, θ) = Ynm1(λ, θ) = cosmλ Pnm(cos θ) m ≥ 0 (3.15)

Ynm(λ, θ) = Yn|m|2(λ, θ) = sin |m|λ Pn|m|(cos θ) m < 0 . (3.16)

Integration over the unit sphere

The spherical harmonics Ynm are orthogonal on the unit sphere Ω. Integrating
products of spherical harmonics Ynm yields

∫

Ω

YnmYn′m′dω = 4π
1

Π2
nm

δnn′δmm′ (3.17)

with

Πnm =

√

(2 − δ0m)(2n+ 1)
(n−m)!

(n+m)!
, (3.18)

in particular

Πn0 =
√

(2n+ 1) . (3.19)

Consequently,

∫

Ω

Ynmdω = 4πδn0δm0 . (3.20)

Integrals over various products of derivatives of spherical harmonics can be
found in [13].
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4π- or fully normalized spherical harmonics

It is common in geodesy to introduce 4π- or fully normalized associated Leg-
endre functions

P̄nm = ΠnmPnm . (3.21)

The relation between the P̄nm of positive order, n ≥ m ≥ 0 and those of
negative order, Pn,−m, is

P̄n,−m(t) = (−1)mP̄nm (3.22)

P̄nm(t) = (−1)mP̄n,−m . (3.23)

Using the P̄nm of positive order, we introduce 4π- or fully normalized spherical
harmonics

Ȳnm = ΠnmYnm (3.24)

or

Ȳnm(λ, θ) = cosmλ P̄nm(cos θ) m ≥ 0 (3.25)

Ȳnm(λ, θ) = sin |m|λ P̄n|m|(cos θ) m < 0 .

with spherical harmonic coefficients C̄nm = 1
Πnm

Cnm, S̄nm = 1
Πnm

Snm, or

f̄nm, f̄nm1, f̄nm2 accordingly. By definition, these fully normalized spherical
harmonics fulfill

∫

Ω

ȲnmȲn′m′dω = 4πδnn′δmm′ . (3.26)

The addition theorem relates fully (4π-) normalized spherical harmonics and
the (un–normalized) Legendre polynomials

1

2n+ 1

n∑

m=−n
Ȳnm(λ, θ)Ȳnm(λ′, θ′) = Pn(cosψ) . (3.27)

In particular,

1

2n+ 1

n∑

m=−n
Ȳ 2
nm(λ, θ) = 1 . (3.28)

Practical computation of the fully normalized spherical harmonics

In practice, the fully normalized associated Legendre functions P̄nm(cos θ) are
computed via recursion relations.

Example. One of the most often applied recursive algorithms for the normal-
ized Legendre functions as a function of co-latitude θ is the following
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c = cos θ

s = sin θ

P̄00 = 1

P̄11 =
√

3 · s
do n = 2, n̄

an =

√

2n+ 1

2n

P̄nn = an · s · P̄n−1n−1

end do

do n = 1, n̄

bn =
√

2n+ 1

P̄nn−1 = bn · c · P̄n−1n−1

end do

do n = 2, n̄

do m = n, 0,−1

cn =

√

(2n+ 1)

(n−m)(n+m)

dn =
√

2n− 1

en =

√

(n−m− 1)(n+m− 1)

(2n− 3)

P̄nm = cn ·
(
dn · c · P̄n−1m − en · P̄n−2m)

)

end do

end do

Normalized complex spherical harmonics

Normalized complex spherical harmonics are introduced in different ways.
Following e.g. [8] and using associated Legendre functions of positive and
negative order, n ≥ m ≥ −n

Ȳnm =
(−1)m√

4π
Ξnm (cosmλ+ i sinmλ)Pnm(cos θ) (3.29)

=
(−1)m√

4π
Ξnm e

imλPnm(cos θ)
︸ ︷︷ ︸

Ynm

where

Ξnm =

√

(2n+ 1)
(n−m)!

(n+m)!
=

Πnm√
2 − δ0m

. (3.30)
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Here
Ȳnm = (−1)mȲ∗

n,−m Ȳ∗
nm = (−1)mȲn,−m (3.31)

follows from eq. (3.23) and

ΞnmPnm(cos θ)(cosmλ+ i sinmλ)

= (−1)mΞn,−mPn,−m(cos θ)(cosmλ− i sin(−mλ)) .

Consequently, in place of eq. (3.29) we could write

Ȳnm =
(−1)m√

4π
Ξnm (cosmλ+ i sinmλ)Pnm(θ) m ≥ 0 (3.32)

= (−1)mȲ∗
n|m| m < 0 .

This is to relate complex spherical harmonics of negative order to associated
Legendre functions of positive order. The Ȳnm are 1-normalized, thus

∫

Ω

ȲnmȲ∗
n′m′dω = δnn′δmm′ . (3.33)

And,

n∑

m=−n
Ȳnm(λ, θ)Ȳ∗

nm(λ′, θ′) (3.34)

= Ȳn0(λ, θ)Ȳ∗
n0(λ

′, θ′) +

n∑

m=1

(
Ȳnm(λ, θ)Ȳ∗

nm(λ′, θ′) + Ȳ∗
nm(λ, θ)Ȳnm(λ′, θ′)

)

=
1

4π

n∑

m=−n
Ȳnm(λ, θ)Ȳnm(λ′, θ′) =

2n+ 1

4π
Pn(cosψ) . (3.35)

The relation between the complex Ȳnm and the real-valued valued Ȳnm is thus

Ȳnm =
(−1)m√

4π

1√
2 − δ0m

(Ȳnm + iȲn,−m) m ≥ 0

Ȳnm =
1√
4π

1√
2
(Ȳn|m| − iȲn,−|m|) m < 0 .

Some integrals

Some useful integrals are expressed below, using both unnormalized and fully
normalized spherical harmonic representation.

1

4π

∫

Ω

Fdω = f00 = f̄00 (3.36)

1

4π

∫

Ω

F 2dω =

∞∑

n=0

n∑

m=−n

f2
nm

Π2
nm

=

∞∑

n=0

n∑

m=−n
f̄2
nm (3.37)
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1

4π

∫

Ω

FGdω =
∞∑

n=0

n∑

m=−n

fnmgnm
Π2
nm

=
∞∑

n=0

n∑

m=−n
f̄nmḡnm (3.38)

1

4π

∫

Ω

FYnmdω =
fnm
Π2
nm

=
f̄nm
Πnm

(3.39)

1

4π

∫

Ω

FȲnmdω =
fnm
Πnm

= f̄nm (3.40)

1

4π

∫

Ω

F Ȳnmdω =
(−1)m√

4π

1√
2 − δ0m

(
f̄nm + if̄n,−m

)
m ≥ 0

=
(−1)m√

4π

1√
2

(
f̄n|m| + if̄n,−|m|

)
m < 0 (3.41)

3.2 Spherical Coordinates

We use spherical longitude λ, co-latitude θ = π
2 − φ and radius r. ’Geodetic’

coordinates can all be easily transformed to spherical coordinates.

A vector field, when represented with respect to the local basis er, eθ, eλ,
reads

f = frer + fθeθ + fλeλ . (3.42)

The gradient and the Laplace operator applied to a 3D-function F (λ, θ, r) in
spherical coordinates are

∇F =
∂F

∂r
er +

1

r

∂F

∂θ
eθ +

1

r sin θ

∂F

∂λ
eλ . (3.43)

∆F = ∇ · ∇F =
1

r2
∂

∂r

(

r2
∂F

∂r

)

+
1

r2

(
1

sin θ

∂

∂θ

(

sin θ
∂F

∂θ

))

(3.44)

+
1

r2 sin2 θ

∂2F

∂λ2

=
∂2F

∂r2
+

2

r

∂F

∂r
+

1

r2
∂2F

∂θ2
+

1

r2 tan θ

∂F

∂θ

+
1

r2 sin2 θ

∂2F

∂λ2

The gradient of the vector field can be written as a matrix, with entries

∇f =







∂fr

∂r
1
r
∂fr

∂θ − fθ

r
1

r sin θ
∂fr

∂λ − fλ

r

∂fθ

∂r
1
r
∂fθ

∂θ + fr

r
1

r sin θ
∂fθ

∂λ − cot θ fλ

r

∂fλ

∂r
1
r
∂fλ

∂θ
1

r sin θ
∂fλ

∂λ + cot θ fθ

r + ∂fr

∂r







(3.45)

The divergence of the vector field is
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∇ · f =
1

r2
∂

∂r

(
r2fr

)
+

1

r sin θ

∂

∂θ
(sin θfθ) +

1

r sin θ

∂

∂λ
fλ (3.46)

=
2

r
fr +

∂

∂r
fr +

1

r sin θ

∂

∂θ
(sin θfθ) +

1

r sin θ

∂

∂λ
fλ

For completeness, we note the strain tensor ǫ = 1
2 (∇u + (∇u)T) and the

(Cauchy) stress tensor in spherical coordinates:

ǫ = ǫrrerer
T + ǫθθeθeθ

T + ǫλλeλeλ
T (3.47)

+ ǫrθ
(
ereθ

T + eθer
T
)

+ ǫrλ
(
ereλ

T + eλer
T
)

+ ǫθλ
(
eθeλ

T + eλeθ
T
)

in particular

ǫrr =
∂ur
∂r

(3.48)

ǫθθ =
1

r

∂uθ
∂θ

+
1

r
ur (3.49)

ǫλλ =
1

r sin θ

∂uλ
∂λ

+
1

r
ur +

1

r tan θ
uθ (3.50)

ǫrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r

− 1

r
uλ

)

(3.51)

ǫrλ =
1

2

(
1

r sin θ

∂ur
∂λ

+
∂uλ
∂r

− 1

r
uλ

)

(3.52)

ǫθλ =
1

2

(
1

r sin θ

∂uθ
∂λ

+
1

r

∂uλ
∂θ

+
1

r tan θ
uλ

)

(3.53)

and

σ = σrrerer
T + σθθeθeθ

T + σλλeλeλ
T (3.54)

+ σrθ
(
ereθ

T + eθer
T
)

+ σrλ
(
ereλ

T + eλer
T
)

+ σθλ
(
eθeλ

T + eλeθ
T
)
.
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