Combining InSAR and GPS data to distinguish coseismic and postseismic slip in the 2003 San Simeon and 2004 Parkfield earthquakes

Ingrid A. Johanson
IGCP 565 Workshop
Oct. 11, 2010
Two Central California Earthquakes

- 10 months and 60 km apart
- 2003 San Simeon
 - $M_w 6.5$
 - Largest EQ in region in last 100 years
 - Little postseismic slip on multiple structures
- 2004 Parkfield EQ
 - $M_w 6.0$
 - Most recent in a series of M6 eqs since 1857.
 - Copious postseismic slip
- Both typify of their tectonic settings
The Parkfield Segment

- Transition Zone
 - Some steady creep
 - Some strain accumulation
 - Transient slip
 - 1993-1996 slow earthquake
 - Copious postseismic slip

- 2004 earthquake
 - Nearly as much (or more) aseismic slip as seismic
 - Occurred extremely rapidly following the earthquake
 - Typical of earthquake on creeping fault (?)
The Parkfield Segment

- **Transition Zone**
 - Some steady creep
 - Some strain accumulation
 - Transient slip
 - 1993-1996 slow earthquake
 - Copious postseismic slip

- **2004 earthquake**
 - Nearly as much (or more) aseismic slip as seismic
 - Occurred extremely rapidly following the earthquake
GPS Displacements

Coseismic (d_{pk})

Postseismic (A_{ps})

Displacements relative to station ORES
The Parkfield Segment

- Transition Zone
 Heterogeneous distribution of fault frictional regimes
- 2004 earthquake
 Good separation of seismic vs. aseismic slip:
 - How transition is accommodated
 - What can we expect on other faults
ENVISAT Interferograms

7/3/03-9/30/04

4/14/04-10/6/04

5/19/04-10/6/04

9/14/04-11/23/04

6/23/04-12/15/04

ENVISAT Interferograms

8/26/04-12/9/04

6/19/04-12/28/04

RADARSAT Interfs.

5/19/04-10/6/04

8/26/04-12/9/04

6/19/04-10/17/04

6/19/04-12/28/04

Small earthquake → low signal to noise

SAFOD

Parkfield EQ epicenter

San Simeon EQ epicenter
Time History from GPS

Fit time-series with...
Steady Interseismic rate
Offset at San Simeon EQ (12/22/2003)
Offset at Parkfield EQ (d_{pk})
Exponential after Parkfield EQ

$$A_{ps} \left(1 - e^{-\frac{t - t_{pk}}{\tau}} \right)$$

A_{ps} = Amplitude
τ = decay time constant
t = time
t_{pk} = date of Parkfield earthquake
Geodetic Data for Parkfield EQ

- 8 Interferograms
 - co-, post-intermixed
- 2 sets GPS displacements
 - co-, post-separate
- 1 model
 - BOTH co-, post-slip
Inversion Formulation

\[\begin{align*}
\alpha G_{sl} & \quad \alpha G_{sl} \quad 1 - e^{-t_{ps1} - t_{pk}/\tau} \\
M & \quad M \\
\alpha G_{sN} & \quad \alpha G_{sN} \quad 1 - e^{-t_{psN} - t_{pk}/\tau} \\
G_{gc} & \quad 0 \\
G_{gp} & \quad \beta \nabla^2 \\
\beta \nabla^2 &
\end{align*} \]

\[\begin{align*}
R^1 & \quad \begin{bmatrix} r \\ \nabla d_{sl} \end{bmatrix} \\
M & \quad M \\
R & \quad r \\
\beta \nabla^2 & \\
\beta \nabla^2 & \\
0 & \quad 0 \\
0 & \quad 0 \\
0 & \quad 0 \\
R &
\end{align*} \]

\[\begin{align*}
d_{sN} & = \text{InSAR data} \\
r & = \text{r} \\
d_{pk}, d_{ps} & = \text{coseismic and postseismic GPS data} \\
\alpha & = \text{InSAR data weight} \\
G_{sN}, G_{gc}, G_{gp} & = \text{Green's functions for InSAR, co- and postseismic GPS} \\
\tau & = \text{decay time constant} \\
t_{psN} & = \text{Enddate of Interferogram} \\
t_{pk} & = \text{date of Parkfield earthquake} \\
\beta & = \text{weight of Laplacian smoothing operator (\nabla^2)} \\
s_{cs} & = \text{coseismic slip} \\
A_{ps} & = \text{amplitude of postseismic exponential} \\
\tau & = \text{tilt across each interferogram} \\
xy_N & = \text{Green's functions for tilt} \]
Inversion Formulation

\[\begin{align*}
\alpha G_{sN} & \quad M \\
\alpha G_{sN} & \quad G_{gc} \\
0 & \quad \beta \nabla^2 \\
\end{align*} \]

\[\begin{align*}
\alpha G_s & \\
G_{gp} & \quad 0 \\
0 & \quad \beta \nabla^2 \\
\end{align*} \]

\[\begin{align*}
R^1 & \\
& \quad r \\
& \quad xy_1 \\
& \quad \alpha d_{sN} \\
& \quad 0 \\
& \quad 0 \\
& \quad 0 \\
& \quad 0 \\
\end{align*} \]

\[\begin{align*}
& \quad r \\
& \quad xy_N \\
& \quad \alpha d_{sN} \\
& \quad 0 \\
\end{align*} \]

Equations and Definitions:

- \(d_{sN} \) = InSAR data
- \(d_{pk}, d_{ps} \) = coseismic and postseismic GPS data
- \(\alpha \) = InSAR data weight
- \(\beta \) = weight of Laplacian smoothing operator (\(\nabla^2 \))
- \(\gamma_{gs} \) = coseismic slip
- \(A_{ps} \) = amplitude of postseismic exponential
- \(t \) = tilt across each interferogram
- \(xy_N \) = Green’s functions for tilt

\[R^1 \quad r \quad xy_1\]

\[R \quad 0 \]

\[R \quad 0 \]

\[R \quad 0 \]

\[R \quad 0 \]
Inversion Formulation

\[\begin{align*}
\alpha G_{s1} & \quad \alpha G_{s2} \\
M & \quad G_{gc} \\
0 & \quad \beta \nabla^2
\end{align*} \]

\[\begin{align*}
\alpha G_{sN} & \quad 0 \\
G_{gp} & \quad \beta \nabla^2
\end{align*} \]

\[\begin{align*}
R^1 & \quad r \\
x y_1 & \quad \alpha d_{s1} \\
M & \quad r \\
x y_N & \quad \alpha d_{sN}
\end{align*} \]

\[\begin{align*}
0 & \quad d_{pk} \\
d_{ps} & \quad 0 \\
0 & \quad R
\end{align*} \]

\[\tau = \text{decay time constant} \]

\[t_{psN} = \text{Enddate of Interferogram} \]

\[t_{pk} = \text{date of Parkfield earthquake} \]
Slip during the Parkfield Earthquake

Coseismic Slip (seismic)

Postseismic Slip (aseismic)

Two slip patches

~Inverse relationship

M\textsubscript{w}6.2

M\textsubscript{w}6.1

2004 hypocenter

Double-Difference relocated seismicity (Thurber et al., 2006)
Postseismic slip and Aftershocks

Coseismic Slip (seismic)

Postseismic Slip (aseismic)

$M_w \sim 5.6$

2004 hypocenter

Double-Difference relocated seismicity (Thurber et al., 2006)

$M_w 5.0$
San Simeon Earthquake

December 22, 2003; Mw6.5

Occurred on northern edge of Los Osos Domain

Oceanic fault: low slip rate and non-creeping

Postseismic slip ~14% of coseismic with complex spatial pattern.

Example of Coast range building event
2 Postseismic Interferograms

Descending ERS

1/20/2004 - 4/1/2004
Ascending Radarsat

1 cycle = 2.8 cm
2 Postseismic Interferograms

Descending ERS

1/20/2004 - 4/1/2004
Ascending Radarsat

1 cycle = 2.8 cm
2 Postseismic Interferograms

Descending ERS

1/20/2004 - 4/1/2004
Ascending Radarsat

Extra slip sometime before 1/20/2004

1 cycle = 2.8 cm
Geodetic Data for San Simeon EQ

- 4 Interferograms
 - Intermixed
 - Postseismic only

- 1 set GPS displacements
 - Coseismic only

- 1 model
 - BOTH co-, post- slip

Coseismic (d_{pk})

7/9/2003 - 4/14/2004
12/9/2003 - 9/14/2004
1/20/2004 - 4/1/2004
Inversion Formulation

\[\begin{bmatrix} W \nabla^2 \beta \end{bmatrix}^{-1} \begin{bmatrix} Wd \end{bmatrix} = r \]

\[m = \begin{bmatrix} \begin{bmatrix} r \end{bmatrix} A_{P1} \end{bmatrix} \]

\[G = \begin{bmatrix} G_{Ca} & G_{P1a} \left(1 - e^{-t_{a2}/\tau} \right) & G_{P2a} & xy_a \end{bmatrix} \]

\[\begin{bmatrix} G_{Cb} & G_{P1b} \left(1 - e^{-t_{b2}/\tau} \right) & G_{P2b} & xy_b \end{bmatrix} \]

\[\begin{bmatrix} 0 & G_{P1c} \left(e^{-t_{c1}/\tau} - e^{-t_{c2}/\tau} \right) & G_{P2c} & xy_c \end{bmatrix} \]

\[\begin{bmatrix} 0 & G_{P1d} \left(e^{-t_{d1}/\tau} - e^{-t_{d2}/\tau} \right) & 0 & xy_d \end{bmatrix} \]

\[G_{Cgps} \]

\[0 \]

\[0 \]

\[0 \]

\[0 \]
San Simeon Slip Model

Coseismic Slip
$M_w=6.5$

Exponentially decaying slip
$M_w=5.8$ (9% of coseismic)

Extra slip
$M_w=5.7$ (5% coseismic)
ΔCoulomb Failure Stress
(San Andreas Parallel)

ΔCFS = µ´ (normal stress) + (shear stress)
µ´ = 0.4 (from Toda and Stein, 2002)

0.1 bars is observed threshold for significant aftershock triggering (e.g. Harris, 1998)
Summary

• Coseismic and postseismic slip can be separated in the modeling stage in cases where
 - the data contains deformation from both periods
 - Some *a priori* info on the time history is available

• Doing so reveals important features of the EQ
 - Prevalence of aseismic slip relative to seismic
 - Distribution and decay of postseismic slip
 - Can calculate relative effects of each period on other structures
The Parkfield Earthquake Prediction Experiment

Quasi-regular series of M~6 earthquakes:
- Next was predicted for 1988 (Bakun & Lindh, 1985)
- Earthquake occurred 16 years “late”

Goals:
- Detect precursory slip
- Test the characteristic earthquake hypothesis
- Get the best records all aspects of an earthquake

http://quake.usgs.gov/research/parkfield
Fault Behavior Spectrum

Locked Fault
- Slip occurs primarily in large earthquakes

Mixed Behavior
- Some Creep
- Some strain accumulation
 - “slow earthquakes”

Block Offset
- No strain accumulation
- No large earthquakes

Steinbrugge Collection, EERC, UC Berkeley

Calaveras Fault, Hollister
Key Observations

• Location at transition zone may control some of its behavior
 - Produces regular, similar earthquakes
 - Transient slip events, such as rapid postseismic slip
 - Sensitive to outside stresses.
• Stress decreased near 1966 hypocenter
 - 1983 Coalinga Earthquake (Toda and Stein, 2002)
 - 1993-1996 slow earthquake (Murray and Segall, 2005)
• Stress increased throughout Parkfield segment
 - 2003 San Simeon earthquake